Cannabis use is increasingly pervasive among adolescents today, even more common than cigarette smoking.
The evolving policy surrounding the legalization of cannabis reaffirms the need to understand the relationship between cannabis exposure early in life and psychiatric illnesses.
Cannabis contains psychoactive components, notably Δ9-tetrahydrocannabinol (THC), that interfere with the brain’s endogenous endocannabinoid system, which is critically involved in both pre- and post-natal neurodevelopment.
Consequently, THC and related compounds could potentially usurp normal adolescent neurodevelopment, shifting the brain’s developmental trajectory toward a disease-vulnerable state, predisposing early cannabis users to motivational, affective, and psychotic disorders.
Numerous human studies, including prospective longitudinal studies, demonstrate that early cannabis use is associated with major depressive disorder and drug addiction.
A strong association between schizophrenia and cannabis use is also apparent, especially when considering genetic factors that interact with this environmental exposure.
These human studies set a foundation for carefully controlled animal studies which demonstrate similar patterns following early cannabinoid exposure.
iven the vulnerable nature of adolescent neurodevelopment and the persistent changes that follow early cannabis exposure, the experimental findings outlined should be carefully considered by policymakers.
In order to fully address the growing issues of psychiatric illnesses and to ensure a healthy future, measures should be taken to reduce cannabis use among teens.
References
1. Johnston LD, O’Malley PM, Bachman JG, Schulenberg JE. Monitoring the Future National Results on Drug Use: 2012 Overview, Key Findings on Adolescent Drug Use. Ann Arbor: Institute for Social Research, The University of Michigan (2013).
2. Kessler RC, Avenevoli S, Costello EJ, Georgiades K, Green JG, Gruber MJ, et al. Prevalence, persistence, and sociodemographic correlates of DSM-IV disorders in the national comorbidity survey replication adolescent supplement. Arch Gen Psychiatry (2012) 69(4):372–80. doi: 10.1001/archgenpsychiatry.2011.160
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
3. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry (2005) 62(6):617–27. doi:10.1001/archpsyc.62.6.593
CrossRef Full Text
4. Substance Abuse and Mental Health Services Administration. Results from the 2010 National Survey on Drug Use and Health: Summary of National Findings. Rockville, MD: HHS Publication (2011). p. 11–4658.
5. Centers for Disease Control and Prevention (CDC)Brener ND, Kann L, Shanklin S, Kinchen S, Eaton DK, et al. Methodology of the youth risk behavior surveillance system – 2013. MMWR Recomm Rep (2013) 62(RR-1):1–20.
Pubmed Abstract | Pubmed Full Text
6. National Institute of Drug Abuse. Marijuana. Bethesda, MD: NIDA InfoFacts (2010). p. 1–5.
7. Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A (2001) 98(16):9371–6. doi:10.1073/pnas.161191698
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
8. Savinainen JR, Saario SM, Laitinen JT. The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. Acta Physiol (Oxf) (2012) 204(2):267–76. doi:10.1111/j.1748-1716.2011.02280.x
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
9. Keimpema E, Mackie K, Harkany T. Molecular model of cannabis sensitivity in developing neuronal circuits. Trends Pharmacol Sci (2011) 32(9):551–61. doi:10.1016/j.tips.2011.05.004
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
10. Berghuis P, Rajnicek AM, Morozov YM, Ross RA, Mulder J, Urban GM, et al. Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science (2007) 316(5828):1212–6. doi:10.1126/science.1137406
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
11. Mulder J, Aguado T, Keimpema E, Barabas K, Ballester Rosado CJ, Nguyen L, et al. Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterning. Proc Natl Acad Sci U S A (2008) 105(25):8760–5. doi:10.1073/pnas.0803545105
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
12. Buckley NE, Hansson S, Harta G. Expression of the CB1 and CB2 receptor messenger RNAs during embryonic development in the rat. Neuroscience (1997) 82(4):1131–49.
Pubmed Abstract | Pubmed Full Text
13. Wu CS, Zhu J, Wager-Miller J, Wang S, O’Leary D, Monory K, et al. Requirement of cannabinoid CB1 receptors in cortical pyramidal neurons for appropriate development of corticothalamic and thalamocortical projections. Eur J Neurosci (2010) 32(5):693–706. doi:10.1111/j.1460-9568.2010.07337.x
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
14. Rodriguez de Fonseca F, Ramos JA, Bonnin A, Fernández-Ruiz JJ. Presence of cannabinoid binding sites in the brain from early postnatal ages. Neuroreport (1993) 4(2):135–8. doi:10.1097/00001756-199302000-00005
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
15. Heng L, Beverley JA, Steiner H, Tseng KY. Differential developmental trajectories for CB1 cannabinoid receptor expression in limbic/associative and sensorimotor cortical areas. Synapse (2011) 65(4):278–86. doi:10.1002/syn.20844
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
16. Ellgren M, Artmann A, Tkalych O, Gupta A, Hansen HS, Hansen SH, et al. Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effects. Eur Neuropsychopharmacol (2008) 18(11):826–34. doi:10.1016/j.euroneuro.2008.06.009
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
17. Lee TT-Y, Hill MN, Hillard CJ, Gorzalka BB. Temporal changes in N-acylethanolamine content and metabolism throughout the peri-adolescent period. Synapse (2013) 67(1):4–10. doi:10.1002/syn.21609
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
18. Kandel D. Stages in adolescent involvement in drug use. Science (1975) 190(4217):912–4. doi:10.1126/science.1188374
CrossRef Full Text
19. Newcomb MD, Bentler PM. Cocaine use among adolescents: longitudinal associations with social context, psychopathology, and use of other substances. Addict Behav (1986) 11(3):263–73. doi:10.1016/0306-4603(86)90054-7
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
20. DeSimone J. Is marijuana a gateway drug? East Econ J (1998) 24(2):149–64.
21. Fergusson DM, Boden JM, Horwood LJ. Cannabis use and other illicit drug use: testing the cannabis gateway hypothesis. Addiction (2006) 101(4):556–69. doi:10.1111/j.1360-0443.2005.01322.x
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
22. Lynskey MT, Heath AC, Bucholz KK, Slutske WS, Madden PA, Nelson EC, et al. Escalation of drug use in early-onset cannabis users vs co-twin controls. JAMA (2003) 289(4):427–33. doi:10.1001/jama.289.4.427
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
23. Morral AR, McCaffrey DF, Paddock SM. Reassessing the marijuana gateway effect. Addiction (2002) 97(12):1493–504. doi:10.1046/j.1360-0443.2002.00280.x
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
24. Ellgren M, Spano SM, Hurd YL. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats. Neuropsychopharmacology (2007) 32(3):607–15. doi:10.1038/sj.npp.1301127
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
25. Tomasiewicz HC, Jacobs MM, Wilkinson MB, Wilson SP, Nestler EJ, Hurd YL. Proenkephalin mediates the enduring effects of adolescent cannabis exposure associated with adult opiate vulnerability. Biol Psychiatry (2012) 72(10):803–10. doi:10.1016/j.biopsych.2012.04.026
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
26. Solinas M, Panlilio LV, Goldberg SR. Exposure to δ-9-tetrahydrocannabinol (THC) increases subsequent heroin taking but not heroin’s reinforcing efficacy: a self-administration study in rats. Neuropsychopharmacology (2004) 29(7):1301–11. doi:10.1038/sj.npp.1300431
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
27. Higuera-Matas A, Botreau F, Del Olmo N, Miguens M, Olias O, Montoya GL, et al. Periadolescent exposure to cannabinoids alters the striatal and hippocampal dopaminergic system in the adult rat brain. Eur Neuropsychopharmacol (2010) 20(12):895–906. doi:10.1016/j.euroneuro.2010.06.017
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
28. Patton GC, Coffey C, Carlin JB, Degenhardt L, Lynskey MT, Hall W. Cannabis use and mental health in young people: cohort study. Br Med J (2002) 325:1195–8. doi:10.1136/bmj.325.7374.1195
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
29. Pedersen W. Does cannabis use lead to depression and suicidal behaviours? A population-based longitudinal study. Acta Psychiatr Scand (2008) 118(5):395–403. doi:10.1111/j.1600-0447.2008.01259.x
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
30. Fergusson DM, Horwood LJ, Swain-Campbell N. Cannabis use and psychosocial adjustment in adolescence and young adulthood. Addiction (2002) 97(9):1123–35. doi:10.1046/j.1360-0443.2002.00103.x
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
31. Georgiades K, Boyle MH. Adolescent tobacco and cannabis use: young adult outcomes from the Ontario Child Health Study. J Child Psychol Psychiatry (2007) 48(7):724–31. doi:10.1111/j.1469-7610.2007.01740.x
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
32. Brook JS, Lee JY, Brown EN, Finch SJ, Brook DW. Developmental trajectories of marijuana use from adolescence to adulthood: personality and social role outcomes. Psychol Rep (2011) 108(2):339–57. doi:10.2466/10.18.PR0.108.2.339-357
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
33. Harder VS, Stuart EA, Anthony JC. Adolescent cannabis problems and young adult depression: male-female stratified propensity score analyses. Am J Epidemiol (2008) 168(6):592–601. doi:10.1093/aje/kwn184
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
34. McQueeny T, Padula CB, Price J, Medina KL, Logan P, Tapert SF. Gender effects on amygdala morphometry in adolescent marijuana users. Behav Brain Res (2011) 224(1):128–34. doi:10.1016/j.bbr.2011.05.031
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
35. Cousijn J, Wiers RW, Ridderinkhof KR, van den Brink W, Veltman DJ, Goudriaan AE. Grey matter alterations associated with cannabis use: results of a VBM study in heavy cannabis users and healthy controls. Neuroimage (2012) 59(4):3845–51. doi:10.1016/j.neuroimage.2011.09.046
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
36. Sheline YI. Depression and the hippocampus: cause or effect? Biol Psychiatry (2011) 70(4):308–9. doi:10.1016/j.biopsych.2011.06.006
CrossRef Full Text
37. Ashtari M, Avants B, Cyckowski L, Cervellione KL, Roofeh D, Cook P, et al. Medial temporal structures and memory functions in adolescents with heavy cannabis use. J Psychiatr Res (2011) 45(8):1055–66. doi:10.1016/j.jpsychires.2011.01.004
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
38. Rubino T, Viganò D, Realini N, Guidali C, Braida D, Capurro V, et al. Chronic δ9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology (2008) 33(11):2760–71. doi:10.1038/sj.npp.1301664
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
39. Bambico FR, Nguyen NT, Katz N, Gobbi G. Chronic exposure to cannabinoids during adolescence but not during adulthood impairs emotional behaviour and monoaminergic neurotransmission. Neurobiol Dis (2010) 37(3):641–55. doi:10.1016/j.nbd.2009.11.020
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
40. Zamberletti E, Prini P, Speziali S, Gabaglio M, Solinas M, Parolaro D, et al. Gender-dependent behavioral and biochemical effects of adolescent delta-9-tetrahydrocannabinol in adult maternally deprived rats. Neuroscience (2012) 204:245–57. doi:10.1016/j.neuroscience.2011.11.038
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
41. O’Shea M, McGregor IS, Mallet PE. Repeated cannabinoid exposure during perinatal, adolescent or early adult ages produces similar longlasting deficits in object recognition and reduced social interaction in rats. J Psychopharmacol (2006) 20(5):611–21. doi:10.1177/0269881106065188
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
42. O’Shea M, Singh ME, McGregor IS, Mallet PE. Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats. J Psychopharmacol (2004) 18(4):502–8. doi:10.1177/0269881104047277
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
43. Quinn HR, Matsumoto I, Callaghan PD, Long LE, Arnold JC, Gunasekaran N, et al. Adolescent rats find repeated δ9-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology (2008) 33(5):1113–26. doi:10.1038/sj.npp.1301475
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
44. Schneider M, Schomig E, Leweke FM. Acute and chronic cannabinoid treatment differentially affects recognition memory and social behavior in pubertal and adult rats. Addict Biol (2008) 13(3–4):345–57. doi:10.1111/j.1369-1600.2008.00117.x
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
45. Wegener N, Koch M. Behavioural disturbances and altered Fos protein expression in adult rats after chronic pubertal cannabinoid treatment. Brain Res (2009) 1253:81–91. doi:10.1016/j.brainres.2008.11.081
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
46. Biscaia M, Marin S, Fernandez B, Marco EM, Rubio M, Guaza C, et al. Chronic treatment with CP 55,940 during the peri-adolescent period differentially affects the behavioural responses of male and female rats in adulthood. Psychopharmacology (Berl) (2003) 170(3):301–8. doi:10.1007/s00213-003-1550-7
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
47. Schneider M, Drews E, Koch M. Behavioral effects in adult rats of chronic prepubertal treatment with the cannabinoid receptor agonist WIN 55,212-2. Behav Pharmacol (2005) 16(5–6):447–54. doi:10.1097/00008877-200509001-00182
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
48. Page ME, Oropeza VC, Sparks SE, Qian Y, Menko AS, Van Bockstaele EJ. Repeated cannabinoid administration increases indices of noradrenergic activity in rats. Pharmacol Biochem Behav (2007) 86(1):162–8. doi:10.1016/j.pbb.2006.12.020
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
49. Anglin DM, Corcoran CM, Brown AS, Chen H, Lighty Q, Brook JS, et al. Early cannabis use and schizotypal personality disorder symptoms from adolescence to middle adulthood. Schizophr Res (2012) 137(1–3):45–9. doi:10.1016/j.schres.2012.01.019
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
50. Mathias CW, Blumenthal TD, Dawes MA, Liguori A, Richard DM, Bray B, et al. Failure to sustain prepulse inhibition in adolescent marijuana users. Drug Alcohol Depend (2011) 116(1–3):110–6. doi:10.1016/j.drugalcdep.2010.11.020
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
51. Ferdinand RF, van der Ende J, Bongers I, Selten JP, Huizink A, Verhulst FC. Cannabis – psychosis pathway independent of other types of psychopathology. Schizophr Res (2005) 79(2–3):289–95. doi:10.1016/j.schres.2005.07.027
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
52. Andréasson S, Allebeck P, Engström A, Rydberg U. Cannabis and schizophrenia. A longitudinal study of Swedish conscripts. Lancet (1987) 2(8574):1483–6.
Pubmed Abstract | Pubmed Full Text
53. Andréasson S, Allebeck P, Rydberg U. Schizophrenia in users and nonusers of cannabis. A longitudinal study in Stockholm County. Acta Psychiatr Scand (1989) 79(5):505–10. doi:10.1111/j.1600-0447.1989.tb10296.x
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
54. Manrique-Garcia E, Zammit S, Dalman C, Hemmingsson T, Andreasson S, Allebeck P. Cannabis, schizophrenia and other non-affective psychoses: 35 years of follow-up of a population-based cohort. Psychol Med (2012) 42(6):1321–8. doi:10.1017/S0033291711002078
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
55. Arseneault L, Cannon M, Poulton R, Murray R, Caspi A, Moffitt TE. Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. BMJ (2002) 325(7374):1212–3. doi:10.1136/bmj.325.7374.1212
CrossRef Full Text
56. Casadio P, Fernandes C, Murray RM, Di Forti M. Cannabis use in young people: the risk for schizophrenia. Neurosci Biobehav Rev (2011) 35(8):1779–87. doi:10.1016/j.neubiorev.2011.04.007
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
57. Caspi A, Moffitt TE, Cannon M, McClay J, Murray R, Harrington H, et al. Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry (2005) 57(10):1117–27. doi:10.1016/j.biopsych.2005.01.026
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
58. Lachman HM, Morrow B, Shprintzen R, Veit S, Parsia SS, Faedda G, et al. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome. Am J Med Genet (1996) 67(5):468–72. doi:10.1002/(SICI)1096-8628(19960920)67:5<468::AID-AJMG5>3.0.CO;2-G
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
59. Costas J, Sanjuán J, Ramos-Ríos R, Paz E, Agra S, Tolosa A, et al. Interaction between COMT haplotypes and cannabis in schizophrenia: a case-only study in two samples from Spain. Schizophr Res (2011) 127(1–3):22–7. doi:10.1016/j.schres.2011.01.014
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
60. Estrada G, Fatjo-Vilas M, Munoz MJ, Pulido G, Minano MJ, Toledo E, et al. Cannabis use and age at onset of psychosis: further evidence of interaction with COMT Val158Met polymorphism. Acta Psychiatr Scand (2011) 123(6):485–92. doi:10.1111/j.1600-0447.2010.01665.x
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
61. Pelayo-Terán JM, Perez-Iglesias R, Mata I, Carrasco-Marín E, Vazquez-Barquero JL, Crespo-Facorro B. Catechol-O-Methyltransferase (COMT) Val158Met variations and cannabis use in first-episode non-affective psychosis: clinical-onset implications. Psychiatry Res (2010) 179(3):291–6. doi:10.1016/j.psychres.2009.08.022
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
62. Henquet C, Rosa A, Krabbendam L, Papiol S, Fananas L, Drukker M, et al. An experimental study of catechol-o-methyltransferase Val158Met moderation of delta-9-tetrahydrocannabinol-induced effects on psychosis and cognition. Neuropsychopharmacology (2006) 31(12):2748–57. doi:10.1038/sj.npp.1301197
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
63. O’Tuathaigh CM, Hryniewiecka M, Behan A, Tighe O, Coughlan C, Desbonnet L, et al. Chronic adolescent exposure to δ-9-tetrahydrocannabinol in COMT mutant mice: impact on psychosis-related and other phenotypes. Neuropsychopharmacology (2010) 35(11):2262–73. doi:10.1038/npp.2010.100
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
64. Elsohly MA, Slade D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci (2005) 78(5):539–48. doi:10.1016/j.lfs.2005.09.011
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
65. Ren Y, Whittard J, Higuera-Matas A, Morris CV, Hurd YL. Cannabidiol, a nonpsychotropic component of cannabis, inhibits cue-induced heroin seeking and normalizes discrete mesolimbic neuronal disturbances. J Neurosci (2009) 29(47):14764–9. doi:10.1523/JNEUROSCI.4291-09.2009
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
66. Das RK, Kamboj SK, Ramadas M, Yogan K, Gupta V, Redman E, et al. Cannabidiol enhances consolidation of explicit fear extinction in humans. Psychopharmacology (2013) 226(4):781–92. doi:10.1007/s00213-012-2955-y
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
67. Katsidoni V, Anagnostou I, Panagis G. Cannabidiol inhibits the reward-facilitating effect of morphine: involvement of 5-HT1A receptors in the dorsal raphe nucleus. Addict Biol (2013) 18(2):286–96. doi:10.1111/j.1369-1600.2012.00483.x
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
68. Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry (2012) 2:e94. doi:10.1038/tp.2012.15
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
69. Englund A, Morrison PD, Nottage J, Hague D, Kane F, Bonaccorso S, et al. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J Psychopharmacol (2013) 27(1):19–27. doi:10.1177/0269881112460109
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
70. Guimarães FS, Chiaretti TM, Graeff FG, Zuardi AW. Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacology (1990) 100(4):558–9. doi:10.1007/BF02244012
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
71. Slade D, Mehmedic Z, Chandra S, ElSohly M. Is cannabis becoming more potent. In: Castle D, Murray RM, D’Souza DC, editors. Marijuana and Madness. Cambridge: Cambridge University Press (2012). p. 35–54.