For parents worried that their teenager’s narcissism is out of control, there’s hope. New research from Michigan State University conducted the longest study on narcissism to date, revealing how it changes over time.
“There’s a narrative in our culture that generations are getting more and more narcissistic, but no one has ever looked at it throughout generations or how it varies with age at the same time,” said William Chopik, associate professor of psychology at MSU and lead author.
The research, published in Psychology and Aging, assessed a sample of nearly 750 people to see how narcissism changed from age 13 to 70.
The findings showed that qualities associated with narcissism – being full of yourself, sensitive to criticism and imposing your opinion on others – decline over time and with age. Some character traits – like having high aspirations for yourself – increased with age.
“There are things that happen in life that can shake people a little bit and force them to adapt their narcissistic qualities,” Chopik said.
“As you age, you form new relationships, have new experiences, start a family and so on. All of these factors make someone realize that it’s not ‘all about them.’
And, the older you get, the more you think about the world that you may leave behind.”
The greatest impetus for declining narcissism, Chopik said, was landing a first job.
“One thing about narcissists is that they’re not open to criticism. When life happens and you’re forced to accept feedback, break up with someone or have tragedy strike, you might need to adjust to understanding that you’re not as awesome as you once thought,” Chopik said.
“There’s a sense in which narcissists start to realize that being the way they are isn’t smart if they want to have friends or meaningful relationships.”
The longest study on narcissism shows how it changes over time.
Chopik found that the fastest-changing age group was young adults. He also found that, contrary to popular belief, changes in the levels of narcissism are lifelong and changes don’t stop at any certain age or stage in life.
“One of the most surprising findings was that – also contrary to what many people think – individuals who were born earlier in the century started off with higher levels of hyper-sensitivity, or the type of narcissism where people are full of themselves, as well as willfulness, which is the tendency to impose opinions on others,” Chopik said.
“There isn’t much data on older generations, but now that Baby Boomers are aging into that phase of life, it’s a huge part of the population that we need to be looking at.”
With these his findings, the researchers hope that the public gains a greater understanding about the different types of narcissism as well as new insight to the understudied older populations.
Also, if you’re worried that someone is truly a narcissist, there’s hope they will change for the better as they get older, Chopik added.
Social connection is a fundamental psychological need (Leary and Baumeister, 2017). People who feel connected are healthier, happier, and live longer (for a review, see Hawkley and Cacioppo, 2010). Social exclusion, on the other hand, can cause emotional pain, reduce emotional sensitivity, increase aggression, and lead to long-term psychological problems (for reviews, see Baumeister et al., 2007; Williams, 2007).
For narcissists, social connection is a particularly thorny problem. Narcissists prioritize social validation and superiority in social interactions, but have difficulty forming genuine, close, and stable relationships (Morf and Rhodewalt, 2001; Bergman et al., 2011). Initially seen as charming, the narcissist’s myopic pursuit of approbation leads others to find the relationship taxing and one-sided (Campbell and Campbell, 2009).
Narcissists can seek short-term social connections for validation, such as one-night stands and casual sexual relationships (Jonason and Buss, 2012). However, short-term connections are costly and not reliably rewarding. Thus, narcissists face a dilemma: social connections are their primary source of validation, but pursuing these asymmetric relationships may not always be feasible.
However, the ways in which we establish and maintain relationships has been greatly impacted by social media. Online platforms afford instant connection with family, friends, and acquaintances. Social media can be psychologically rewarding. For example, social media use among people with large social networks causes a temporary bump in self-esteem (Wilcox and Stephen, 2012). Additionally, the number of “likes” a photograph uploaded to Instagram receives is associated with increased activation in the nucleus accumbens, a brain region integral to reward-related processing (Sherman et al., 2018).
Could social media have handed narcissists the perfect solution to their dilemma? That is, might validation through social media allow narcissists to meet their deep need for social approval without the effort of real-world relationships?
A central psychological currency on social media is validation. Social networking sites such as Facebook and Instagram allow users to enhance their photos using filters and editing tools before uploading to a potentially global audience who can provide instant, positive feedback. And the obstacles in establishing and maintaining genuine connections are avoided. Research shows that narcissists are particularly active on social media (Buffardi and Campbell, 2008).
Narcissists also report more frequent “selfie” (i.e., picture of oneself) posting (Barry et al., 2017), higher levels of self-reported attractiveness in “selfies” (Re et al., 2016), and increased positive affect when posting selfies, particularly among those with high levels of grandiose narcissism (McCain et al., 2016). Social media may thus be an ideal hunting ground for narcissists to pursue reliable shots of validation.
To date, however, no research has demonstrated that social media serves a psychological function for narcissists. The present research examines if people high in narcissism can regulate negative affect from exclusion through validation from social media.Go to:
Narcissism, Exclusion, and the Brain
We focus on narcissism as conceptualized in social-personality (SP) psychological research—a personality trait that varies normally across individuals—as opposed to conceptualizations of narcissism as a personality disorder (Cain et al., 2008). Trait narcissism is characterized by a grandiose yet fragile self-image sustained by external validation and approval. Threats to this self-image cause narcissists to react with increased anger and aggression (Bushman and Baumeister, 1998).
As part of intrapsychic and interpersonal strategies employed to attain social approval or superiority, narcissists seek physical attractiveness, personal success, and social dominance (Campbell and Campbell, 2009). After receiving social approbation, however, narcissists become particularly callous, displaying particularly low levels of empathy (McGregor et al., 2013).
At a trait level, narcissism is associated with high levels of extraversion and agency and low levels of agreeableness. Men tend to be more narcissistic (though this may be due to shared variance with psychopathy), trait levels decline with age, and culture moderates perceptions of narcissism (Wilson and Sibley, 2011; Grijalva et al., 2015). Interpersonally, narcissism is characterized by poor regard for others and poor relational functioning (Konrath and Bonadonna, 2014). Narcissists feel entitled to special treatment and they owe others little (Millon and Davis, 1996).
Narcissists are particularly sensitive to exclusion. For example, social exclusion causes narcissists to react more aggressively toward those who rejected them and even toward uninvolved third parties (Twenge and Campbell, 2003). On the other hand, narcissists reliably report higher levels of self-esteem, happiness, and well-being, leading some researchers to reasonably conclude that narcissism is psychologically healthy (Sedikides et al., 2004). Such conclusions contrast sharply with classical views on narcissism as a compensatory defense against a deeper sense of insecurity or inferiority (Freud, 1914; Adler, 1939; Horney, 1945/2013; Bowlby, 1988/2012). Would one expect a narcissist to self-report anything other than cheery prospects and sanguine psychological states?
Contemporary research using more objective neuroscience measures support these classical views (see also Millon and Davis, 1996, for a biosocial approach to narcissism). For example, in a recent fMRI study, participants viewed pictures of their own face, a friend’s face, and a stranger’s face. In contrast to the self-report research on selfies and narcissism cited above (McCain et al., 2016), results here showed that viewing their own face caused narcissistic men to demonstrate increased activation in the anterior cingulate cortex (ACC) and the right anterior insula, a pattern of activation consistent with negative affect or emotional conflict (Jauk et al., 2017).
This finding stands in direct contrast to the idea that narcissists find the self inherently rewarding and points to an implicit sense of insecurity. Similarly, a diffusion tensor imaging study found that narcissism is associated with reduced connectivity between the ventral striatum and the medial prefrontal cortex (mPFC; Chester et al., 2015). The mPFC has been associated with self-relevant processing and the ventral striatum is associated with reward-related processing.
Further, connectivity between these two regions has been associated with increased positive self-regard (Chavez and Heatherton, 2014). This suggests that narcissism also involves a restricted neuroanatomical link between the self and reward.
In response to social exclusion, narcissism was associated with increased activation in the putative “social pain” network, which includes the ACC and the anterior insula (Cascio et al., 2014). Interestingly, self-report indices did not reveal any association between narcissism and distress after social exclusion (Cascio et al., 2014). Moreover, aggressive reactions to social exclusion characteristic of narcissists are moderated by the degree of activation in the ACC (Chester and DeWall, 2016).
The authors reasoned that the narcissist’s distress was caused by detection of a discrepancy between the idealized self and the threatened self. Increased distress then led to increased aggression among narcissists.
In all, these findings support the notion that narcissists are particularly vulnerable and highly motivated to defend against social exclusion. More broadly, these findings demonstrate how neuroscience measures can directly address the inherent problems in using self-report to reveal underlying mechanisms in narcissism-related processes.Go to:
The Current Study
To avoid the issues inherent in measuring the relationship between narcissism and distress to social exclusion using self-report, the current study used objective, electrophysiological measures. To create distress, all participants first experienced social exclusion via the well-established Cyberball task (Williams and Jarvis, 2006; Hartgerink et al., 2015).
Participants were then randomly assigned to one of three conditions: in the “selfie with likes” condition; participants took a “selfie,” edited and enhanced the photo to their liking, uploaded the “selfie” to their Instagram account, and then viewed bogus, but ostensibly real feedback in the form of “likes” on their Instagram account.
The bogus feedback was delivered by a novel software program developed for this study. In the “selfie” only condition, participants similarly uploaded an edited “selfie” to their Instagram account, but received no feedback from others and only viewed the picture for the same duration.
This condition was included to explore whether social approval was necessary to mask distress following social exclusion or whether self-presentation alone was sufficient. Finally, the control condition involved viewing a motivationally/affectively neutral image (i.e., gravel, see Harmon-Jones and Gable, 2009) on Instagram and involved no “selfie” or validation from others.
Both before and after uploading the selfie onto Instagram, participants completed a passive-listening auditory startle task, during which EEG was recorded. Infrequent, aversive blasts of white noise (i.e., startle stimuli) elicit a characteristic event-related potential (ERP) component—variously termed the P3a, startle P3, or novelty P3 (Combs and Polich, 2006; Keil et al., 2007). The P3 or P3a component elicited by white noise or acoustic startle peaks over fronto-central electrodes between ∼250 and 350 ms post-stimulus and is thought to reflect rapid, automatic shifts in attentional processes toward motivationally salient stimuli (Polich, 2007; Volpe et al., 2007; Frank et al., 2012).
According to the locus coeruleus-norepiniphrine (LC-NE) hypothesis of the P3 (Nieuwenhuis et al., 2005), the P3 is driven by the LC-NE system and represents the cortical analog of emotional arousal. The LC-NE system is integral to emotional arousal (Gray and McNaughton, 2000; Berridge and Waterhouse, 2003; Ulrich-Lai and Herman, 2009).
The LC is activated by the same stimuli and is modulated by the same precedent conditions as the P3 (e.g., in an oddball paradigm, Nieuwenhuis et al., 2005, 2011) and direct stimulation of the LC-NE system causes a P3-like component (Vazey et al., 2018). Further, P3 amplitude tracks measures of sympathetic arousal. For example, skin conductance correlates with novelty and P3a components in auditory oddball tasks (Rushby et al., 2005; Rushby and Barry, 2009). Further, the sympathetic arousal component in pupil dilation to novel sounds is associated with P3 amplitude to the same stimuli (Widmann et al., 2018).
Importantly, the P3 is sensitive to distress or negative affect. For example, stressful or anxiety-provoking events cause increased P3 amplitude on a subsequent auditory oddball task (Grillon and Ameli, 1994; Ermutlu et al., 2005). High-anxiety people show the largest P3a, particularly after negative affect induction (Wang et al., 2017a). Increased P3 amplitude to white noise is associated with increased self-reported negative affect (Masuda et al., 2018). Enhanced P3a amplitudes are associated with disorders involving increased negative affect, including panic disorder (Clark et al., 1996), obsessive–compulsive disorder (Ischebeck et al., 2011), and post-traumatic stress disorder (PTSD) (Kimble et al., 2000). Finally, a drug that increases NE release causes increased P3a amplitude (Missonnier et al., 1999).
Conversely, meditation reduces the amplitude of the P3 to white noise burst (Cahn and Polich, 2009). A low dose of alcohol mutes the P3 to novelty (Marinkovic et al., 2001). Clonidine, a drug that attenuates baseline NE activity, decreases the amplitude of the P3a to auditory oddball stimuli (Brown et al., 2015). Sensation seeking, a trait characterized by low negative affect and low distress, correlates with decreased P3 (Wang and Wang, 2001).
In sum, the P3 directly reflects emotional arousal and is sensitive to distress, suggesting that P3 mean amplitude to white noise bursts may be used as a more objective and direct measure of emotional arousal to social exclusion. Consistent with this, social exclusion causes increased P3a amplitude, and P3a amplitude is related to the negative mood associated with social exclusion (Gutz et al., 2011).
A more objective measure is a requirement in studies on narcissism and emotional reactions to ostracism. As noted above, a narcissist’s social pain to rejection can only be seen “in the brain” (Cascio et al., 2014), and this pain drives compensatory behavior for people high in narcissism, while self-report is unrelated to the degree of social pain or compensatory behavior.
Our pre–post measure of white noise P3 amplitude thus allowed us to sidestep issues with self-report and directly examine if narcissists, driven by a sharpened need to obtain social validation after exclusion, would show the greatest reduction in emotional arousal in the “selfie with likes” condition.
Source:
Michigan State University
Media Contacts:
Caroline Brooks – Michigan State University
Image Source:
The image is credited to Taylor Smith.
Original Research: Closed access
“Longitudinal changes and historic differences in narcissism from adolescence to older adulthood”. Chopik, William J., Grimm, Kevin J.
Psychology and Aging doi:10.1037/pag0000379.