Children who eat more organic foods have better fluid intelligence and working memory


A study analysing the association between a wide variety of prenatal and childhood exposures and neuropsychological development in school-age children has found that organic food intake is associated with better scores on tests of fluid intelligence (ability to solve novel reasoning problems) and working memory (ability of the brain to retain new information while it is needed in the short term).

The study, published in Environmental Pollution, was conceived and designed by researchers at the Barcelona Institute for Global Health (ISGlobal)–a centre supported by the “la Caixa” Foundation–and the Pere Virgili Health Research Institute (IISPV-CERCA).

The explanation for this association may be that “healthy diets, including organic diets, are richer than fast food diets in nutrients necessary for the brain, such as fatty acids, vitamins and antioxidants, which together may enhance cognitive function in childhood,” commented lead author Jordi Júlvez, a researcher at IISPV-CERCA who works closely with ISGlobal.

The study also found that fast food intake, house crowding and environmental tobacco smoke during childhood were associated with lower fluid intelligence scores. In addition, exposure to fine particulate matter (PM2.5) indoors was associated with lower working memory scores.

The study, titled “Early life multiple exposures and child cognitive function: A multi-centric birth cohort study in six European countries”, used data on 1,298 children aged 6-11 years from six European country-specific birth cohorts (United Kingdom, France, Spain, Greece, Lithuania and Norway).

The researchers looked at 87 environmental factors the children were exposed to in utero (air pollution, traffic, noise, various chemicals and lifestyle factors) and another 122 factors they were exposed to during childhood.

A Pioneering Study

The aim of the study was to analyse the influence of these exposures on the development and maturation of the human brain, since during childhood the brain is not yet fully developed for efficient defence against environmental chemicals and is particularly sensitive to toxicity, even at low levels that do not necessarily pose a risk to a healthy mature brain.

The originality of the study lies in its use of an exposome approach, i.e. the fact that it takes into account the totality of exposures rather than focusing on a single one. This approach aims to achieve a better understanding of the complexity of multiple environmental exposures and their simultaneous effect on children’s neurodevelopment.

Another strength of the study, which analyses cohorts from six European countries, is its diversity, although this factor also poses the additional challenge of cultural differences, which can influence exposure levels and cognitive outcomes.

Notable Associations

The study found that the main determinants of fluid intelligence and working memory in children are organic diet, fast food diet, crowdedness of the family home, indoor air pollution and tobacco smoke.

To date, there has been little research on the relationship between type of diet and cognitive function, but fast food intake has been associated with lower academic development success and some studies have also reported positive associations between organic diets and executive function scores.

“In our study,” explained Júlvez, “we found better scores in fluid intelligence and working memory with higher organic food intake and lower fast food intake.”

In contrast, exposure to tobacco smoke and indoor PM2.5 during childhood may negatively affect cognitive function by enhancing pro-inflammatory reactions in the brain. Still, according to Júlvez, it is worth bearing in mind that “the number of people living together in a home is often an indicator of the family’s economic status, and that contexts of poverty favour less healthy lifestyles, which in turn may affect children’s cognitive test scores”.

Some Surprising Findings

The study also found some unexpected associations, which could be explained by confounding and reverse causality. For example, a positive association was found between childhood exposure to perfluorooctane sulfonic acid (PFOS) and cognitive function, even though PFOS is considered an endocrine disruptor that may alter thyroid function and negatively influence cognitive development.

The study forms part of the large European project Human Early-Life Exposome (HELIX), as does another recent paper that used the same exposome and the same participants but looked at symptoms of attention deficit hyperactivity disorder (ADHD) and childhood behavioural problems.

“We observed that several prenatal environmental pollutants (indoor air pollution and tobacco smoke) and lifestyle habits during childhood (diet, sleep and family social capital) were associated with behavioural problems in children,” explained Martine Vrijheid, last author of the study and head of ISGlobal’s Childhood and Environment programme.

“One of the strengths of this study on cognition and the earlier study on behavioural problems is that we systematically analysed a much wider range of exposure biomarkers in blood and urine to determine the internal levels in the model and that we analysed both prenatal and childhood exposure variables,” concluded Vrijheid.

Tests used to quantify cognitive function:

  1. Raven’s Coloured Progressive Matrices (fluid intelligence)
  2. Attention Network Test (attention)
  3. N-Back (working memory)

Cohorts used in the study:

  1. Born in Bradford (BiB), United Kingdom
  2. Étude des déterminants pré- et postnatals du développement et de la santé de l’enfant (EDEN), France
  3. Infancia y Medio Ambiente (INMA), Spain
  4. Kaunus Cohort (KANC), Lithuania
  5. Norwegian Mother, Father and Child Cohort Study (MoBa), Norway
  6. Mother-Child Cohort in Crete (Rhea), Greece

The long-term goal of developing sustainable food systems is considered a high priority by several intergovernmental organisations [1–3]. Different agricultural management systems may have an impact on the sustainability of food systems, as they may affect human health as well as animal wellbeing, food security and environmental sustainability. In this paper, we review the available evidence on links between farming system (conventional vs organic) and human health.

Food production methods are not always easy to classify. This complexity stems from not only the number and varying forms of conventional and organic agricultural systems but also resulting from the overlap of these systems. In this paper, we use the term “conventional agriculture” as the predominant type of intensive agriculture in the European Union (EU), typically with high inputs of synthetic pesticides and mineral fertilisers, and a high proportion of conventionally-produced concentrate feed in animal production.

Conversely, “organic agriculture” is in accordance with EU regulations or similar standards for organic production, comprising the use of organic fertilisers such as farmyard and green manure, a predominant reliance on ecosystem services and non-chemical measures for pest prevention and control and livestock access to open air and roughage feed.

In 2015, over 50.9 million hectares, in 179 countries around the world, were cultivated organically, including areas in conversion [4]. The area under organic management (fully converted and in-conversion) has increased during the last decades in the European Union, where binding standards for organic production have been developed [5, 6].

In the 28 countries forming the EU today, the fraction of organically cultivated land of total agricultural area has been steadily increasing over the last three decades. 0.1%, 0.6%, 3.6%, and 6.2% of agricultural land were organic in 1985, 1995, 2005, and 2015, respectively, equalling 11.2 million ha in 2015 [7–9]. In 7 EU Member States, at least 10% of the agricultural land is organic [7]. In 2003, 125,000 farms in the EU were active in organic agriculture, a number that increased to 185,000 in 2013 [10]. Between 2006 and 2015, the organic retail market has grown by 107% in the EU, to €27.1 billion [7].

This review details the science on the effects of organic food and organic food production on human health and includes

  1. studies that directly address such effects in epidemiological studies and clinical trials.
  2. animal and in vitro studies that evaluate biological effects of organic compared to conventional feed and food.

Focusing on narrower aspects of production, we then discuss the impact of the production system on

  • (3)plant protection, pesticide exposure, and effects of pesticides on human health,
  • (4)plant nutrition, the composition of crops and the relevance for human health,
  • (5)animal feeding regimens, effects on the composition of animal foods and the relevance for human health.
  • (6)animal health and well-being, the use of antibiotics in animal production, its role in the development of antibiotic resistance, and consequences of antibiotic resistance for public health.

In the discussion, we widen the perspective from production system to food system and sustainable diets and address the interplay of agricultural production system and individual food choices. The consequences of these aspects on public health are briefly discussed.

Due to a limited evidence base, minimal importance, lack of a plausible link between production system and health, or due to lack of relevance in the European Union, we do not or only briefly touch upon

  1. singular food safety events such as outbreaks of diseases that are not clearly caused by the production system (hygiene regulations for plant production and for animal slaughtering and processing are for the most part identical for organic and conventional agriculture) or fraudulent introduction of contaminated feed into the feed market
  2. historic events and historic sources of exposure, such as the BSE crisis caused by the now-banned practice of feeding cattle with meat and bone meal from cattle, or continuing effects of the historic use of DDT, now banned in all agricultural contexts globally
  3. contaminants from food packaging
  4. aspects of food processing, such as food additives
  5. the presence of mycotoxins in consequence of post-harvest storage and processing which is governed chiefly by moisture and temperature in storage
  6. the use of growth hormones in animal production, which is not permitted in the EU but in several other countries

Furthermore, aspects of environmental sustainability, such as biodiversity and greenhouse gas emissions, may also be affected by the agricultural production system [11, 12] and may affect human health via food security [13, 14]. While these indirect links are outside the scope of this review, we briefly touch on them in the discussion.

Also, the focus of this article is on public health, not on occupational health of agricultural workers or local residents, although these issues are considered as part of the epidemiological evidence on pesticide effects. While agricultural standards vary between countries and regions, we maintain a global perspective when appropriate and otherwise focus on the European perspective.

The literature search for this review was carried out at first using the PubMed and Web of Science databases, while applying “organic food” or “organic agriculture” along with the most relevant keywords, through to the end of 2016 (more recent references were included, when relevant, although they were not identified through the systematic search). We made use of existing systematic reviews and meta-analyses when possible. In some cases, where scientific literature is scarce, we included grey literature e.g. from authorities and intergovernmental organisations. We also considered references cited in the sources located.

Association between organic food consumption and health: Findings from human studies

A growing literature is aiming at characterizing individual lifestyles, motivations and dietary patterns in regard to organic food consumption, which is generally defined from responses obtained from food frequency questionnaires [15–23]. Still, current research on the role of organic food consumption in human health is scarce, as compared to other nutritional epidemiology topics.

In particular, long-term interventional studies aiming to identify potential links between organic food consumption and health are lacking, mainly due to high costs. Prospective cohort studies constitute a feasible way of examining such relationships, although compliance assessment is challenging. Considering a lack of biomarkers of exposure, the evaluation of the exposure, i.e. organic food consumption, will necessarily be based on self-reported data that may be prone to measurement error.

Some recent reviews have compiled the findings [24–26] from clinical studies addressing the association between consumption of organic food and health. These studies are scant and generally based on very small populations and short durations, thus limiting statistical power and the possibility to identify long-term effects. Smith-Spangler et al. [25] summarised the evidence from clinical studies that overall no clinically significant differences in biomarkers related to health or to nutritional status between participants consuming organic food compared to controls consuming conventional food.

Among studies of nutrient intakes, the OrgTrace cross-over intervention study of 33 males, the plant-based fraction of the diets was produced in controlled field trials, but 12 days of intervention did not reveal any effect of the production system on the overall intake or bioavailability of zinc and copper, or plasma status of carotenoids [27, 28].

In observational studies, a specific challenge is the fact that consumers who regularly buy organic food tend to choose more vegetables, fruit, wholegrain products and less meat, and tend to have overall healthier dietary patterns [18, 29]. Each of these dietary characteristics is associated with a decreased risk for mortality from or incidence of certain chronic diseases [30–36]. Consumers who regularly buy organic food are also more physically active and less likely to smoke [18, 19, 37].

Depending on the outcome of interest, associations between organic vs conventional food consumption and health outcome therefore need to be carefully adjusted for differences in dietary quality and lifestyle factors, and the likely presence of residual confounding needs to be considered.

In children, several studies have reported a lower prevalence of allergy and/or atopic disease in families with a lifestyle comprising the preference of organic food [38–44]. However, organic food consumption is part of a broader lifestyle in most of these studies and associated with other lifestyle factors.

Thus, in the Koala birth cohort of 2700 mothers and babies from the Netherlands [39], exclusive consumption of organic dairy products during pregnancy and during infancy was associated with a 36% reduction in the risk of eczema at age 2 years. In this cohort, the preference of organic food was associated with a higher content of ruminant fatty acids in breast milk [40], which in turn was associated with a lower odds ratio for parent-reported eczema until age 2y [45].

In the MOBA birth cohort study of 28,000 mothers and their offspring, women reporting a frequent consumption of organic vegetables during pregnancy exhibited a reduction in risk of pre-eclampsia [29] (OR = 0.79, 95% CI 0.62 to 0.99). No significant association was observed for overall organic food consumption, or five other food groups, and pre-eclampsia.

The first prospective study investigating weight change over time according to the level of organic food consumption included 62,000 participants of the NutriNet-Santé study. BMI increase over time was lower among high consumers of organic food compared to low consumers (mean difference as % of baseline BMI = − 0.16, 95% Confidence Interval (CI): −0.32; −0.01). A 31% (95% CI: 18%; 42%) reduction in risk of obesity was observed among high consumers of organic food compared to low consumers. Two separate strategies were chosen to properly adjust for confounders [46]. This paper thus confirms earlier cross-sectional analyses from the same study [18].

In regard to chronic diseases, the number of studies is limited. In the Nutrinet-Santé study, organic food consumers (occasional and regular), as compared to non-consumers, exhibited a lower incidence of hypertension, type 2 diabetes, hypercholesterolemia (in both males and females), and cardiovascular disease (in men) [47] but more frequently declared a history of cancer. Inherent to cross-sectional studies, reverse causation cannot be excluded; for example, a cancer diagnosis by itself may lead to positive dietary changes [48].

Only one prospective cohort study conducted in adults addressed the effect of organic food consumption on cancer incidence. Among 623,080 middle-aged UK women, the association between organic food consumption and the risk of cancer was estimated during a follow-up period of 9.3 y. Participants reported their organic food consumption through a frequency question as never, sometimes, or usually/always. The overall risk of cancer was not associated with organic food consumption, but a significant reduction in risk of non-Hodgkin lymphoma was observed in participants who usually/always consume organic food compared to people who never consume organic food (RR = 0.79, 95% CI: 0.65; 0.96) [37].

In conclusion, the link between organic food consumption and health remains insufficiently documented in epidemiological studies. Thus, well-designed studies characterized by prospective design, long-term duration and sufficient sample size permitting high statistical power are needed. These must include detailed and accurate data especially for exposure assessment concerning dietary consumption and sources (i.e. conventional or organic).

Pesticide use – Exposure of consumers and producers

One main advantage of organic food production is the restricted use of synthetic pesticides [5, 6], which leads to low residue levels in foods and thus lower pesticide exposure for consumers. It also reduces the occupational exposure of farm workers to pesticides and drift exposures of rural populations. On average over the last three available years, EFSA reports pesticide residues below Maximum Residue Levels (MRL) in 43.7% of all and 13.8% of organic food samples. MRLs reflect the approved use of a pesticide rather than the toxicological relevance of the residue.

There are no separate MRLs for organic products. A total of 2.8% of all and 0.9% of organic samples exceeded the MRL, which may be due to high residue levels or due to low levels but unapproved use of a particular pesticide on a particular crop [74–76]. Of higher toxicological relevance are risk assessments, i.e. expected exposure in relation to toxicological reference values. On average 1.5% of the samples were calculated to exceed the acute reference dose (ARfD) for any of the considered dietary scenarios, with the organophosphate chlorpyrifos accounting for approximately half of these cases and azole fungicides (imazalil, prochloraz, and thiabendazole) for approximately 15%. None (0%) of the organic samples exceeded the ARfD [74]. Residues of more than one pesticide were found in approximately 25% of the samples but calculations of cumulative risks were not included in the reports [74–76].

The only cumulative chronic risk assessment comparing organic and conventional products known to us has been performed in Sweden. Using the hazard index (HI) method [77], adults consuming 500 g of fruit, vegetables and berries per day in average proportions had a calculated HI of 0.15, 0.021 and 0.0003, under the assumption of imported conventional, domestic conventional, and organic products, respectively [78].

This indicates an at least 70 times lower exposure weighted by toxicity for a diet based on organic foods. There are several routes by which pesticides not approved for use in organic agriculture may contaminate organic products, including spray drift or volatilisation from neighbouring fields, fraudulent use, contamination during transport and storage in vessels or storages where previously conventional products have been contained, and mislabelling by intention or mistake. Overall, however, current systems for the certification and control of organic products ensure a low level of pesticide contamination as indicated by chronic and acute risks above, although they still can be improved [79].

The general population’s exposure to several pesticides can be measured by analysing blood and urine samples, as is routinely done in the US [80] although not yet in Europe. However, a few scattered European studies from France [81–83], Germany [84], the Netherlands [85], Spain [86], Belgium [87], Poland [88] and Denmark [89] have shown that EU citizens are commonly exposed to organophosphate and pyrethroid insecticides.

A general observation has been higher urinary concentrations of pesticide metabolites in children compared to adults, most likely reflecting children’s higher food intake in relation to body weight and maybe also more exposure-prone behaviours. The urinary concentrations of generic metabolites of organophosphates (dialkyl phosphates, DAPs) and pyrethroids (3-phenoxybenzoic acid, 3-PBA) found in most of the European studies were similar to or higher than in the US studies.

Although urinary metabolite concentration might overestimate the exposure to the parent compounds, due to ingestion of preformed metabolites in food items, several studies have reported associations between urinary metabolite concentrations and neurobehavioral deficits as described below. Besides, the metabolites are not always less toxic than the parent compounds [90].

For the general population, pesticide residues in food constitute the main source of exposure for the general population. This has been illustrated in intervention studies where the urinary excretion of pesticides was markedly reduced after 1 week of limiting consumption to organic food [91–93]. Similar conclusions emerged from studies investigating associations between urinary concentrations of pesticides and questionnaire information on food intake, frequency of different foodstuffs and organic food choices. Thus a high intake of fruit and vegetables is positively correlated with pesticide excretion [94], and frequent consumption of organic produce is associated with lower urinary pesticide concentration [95].

Pesticide exposure and health effects

The regulatory risk assessment of pesticides currently practised in the EU is comprehensive, as a large number of toxicological effects are addressed in animal and other experimental studies. Nonetheless, there are concerns that this risk assessment is inadequate at addressing mixed exposures, specifically for carcinogenic effects [96] as well as endocrine-disrupting effects [97, 98] and neurotoxicity [99].

Furthermore, there are concerns that test protocols lag behind independent science [100], studies from independent science are not fully considered [101] and data gaps are accepted too readily [102]. These concerns primarily relate to effects of chronic exposure and to chronic effects of acute exposure, which are generally more difficult to discover than acute effects. Most studies rely on urinary excretion of pesticide metabolites and a common assumption is that the subjects were exposed to the parent chemicals, rather than the metabolites.

The overall health benefits of high fruit and vegetable consumption are well documented [31, 35]. However, as recently indicated for effects on semen quality [103], these benefits might be compromised by the adverse effects of pesticide residues. When benefits are offset by a contaminant, a situation of inverse confounding occurs, which may be very difficult to adjust for [104]. The potential negative effects of dietary pesticide residues on consumer health should of course not be used as an argument for reducing fruit and vegetable consumption.

Neither should nutrient contents be used to justify exposures to pesticides. Exposures related to the production of conventional crops (i.e. occupational or drift exposure from spraying) have been related to an increased risk of some diseases including Parkinson’s disease [105–107], type 2 diabetes [108, 109] and certain types of cancers including non-Hodgkin lymphoma [110] and childhood leukaemia or lymphomas, e.g. after occupational exposure during pregnancy [105, 111] or residential use of pesticides during pregnancy [105, 112] or childhood [113].

To which extent these findings also relate to exposures from pesticide residues in food is unclear. However, foetal life and early childhood are especially vulnerable periods for exposure to neurotoxicants and endocrine disruptors. Even brief occupational exposure during the first weeks of pregnancy, before women know they are pregnant, have been related to adverse long-lasting effects on their children’s growth, brain functions and sexual development, in a Danish study on greenhouse worker’s children [114–118].

In order to assess the potential health risk for consumers associated with exposure to dietary pesticides, reliance on epidemiological studies of sensitive health outcomes and their links to exposure measures is needed. Such studies are complicated both by difficult exposure assessment and the necessary long-term follow-up. The main focus so far has been on cognitive deficits in children in relation to their mother’s exposure level to organophosphate insecticides during pregnancy. This line of research is highly appropriate given the known neurotoxicity of many pesticides in laboratory animal models [99] and the substantial vulnerability of the human brain during early development [119].

Most of the human studies have been carried out in the US and have focused on assessing brain functions in children in relation to prenatal organophosphate exposure. In a longitudinal birth cohort study among farmworkers in California (the CHAMACOS cohort), maternal urinary concentrations of organophosphate metabolites in pregnancy were associated with abnormal reflexes in neonates [120], adverse mental development at 2 years of age [121], attention problems at three and a half and 5 years [122], and poorer intellectual development at 7 years [123].

In accordance with this, a birth cohort study from New York reported impaired cognitive development at ages 12 and 24 months and 6 – 9 years related to maternal urine concentrations of organophosphates in pregnancy [124]. In another New York inner-city birth cohort, the concentration of the organophosphate chlorpyrifos in umbilical cord blood was associated with delayed psychomotor and mental development in children in the first 7 years of life [125], poorer working memory and full-scale IQ at 7 years of age [126], structural changes, including decreased cortical thickness, in the brain of the children at school age [127], and mild to moderate tremor in the arms at 11 years of age [128].

Based on these and similar studies, chlorpyrifos has recently been categorised as a human developmental neurotoxicant [129]. Recent reviews of neurodevelopmental effects of organophosphate insecticides in humans conclude that exposure during pregnancy – at levels commonly found in the general population – likely have negative effects on children’s neurodevelopment [130–132]. In agreement with this conclusion, organophosphate pesticides considered to cause endocrine disruption contribute the largest annual health cost within the EU due to human exposures to such compounds, and these costs are primarily due to neurodevelopmental toxicity, as discussed below.

Since growth and functional development of the human brain continues during childhood, the postnatal period is also assumed to be vulnerable to neurotoxic exposures [119]. Accordingly, five-year-old children from the CHAMACOS cohort had higher risk scores for development of attention deficit hyperactive disorder (ADHD) if their urine concentration of organophosphate metabolites was elevated [122].

Based on cross-sectional data from the NHANES data base, the risk of developing ADHD increases by 55% for a ten-fold increase in the urinary concentration of organophosphate metabolites in children aged 8 to 15 years [133]. Also based on the NHANES data, children with detectable concentrations of pyrethroids in their urine are twice as likely to have ADHD compared with those below the detection limit [134]. In addition, associations between urinary concentrations of pyrethroid metabolites in children and parent-reported learning disabilities, ADHD or other behavioural problems in the children have recently been reported in studies from the US and Canada [135, 136].

So far only few prospective studies from the EU addressing associations between urinary levels of pesticides and neurodevelopment in children from the general population have been published. Three studies are based on the PELAGIE cohort in France and present results for organophosphates and pyrethroids respectively [81, 82, 137].

While no adverse effects on cognitive function in six-year-old children were related to maternal urine concentrations of organophosphates during pregnancy, the concentration of pyrethroid metabolites was associated with internalising difficulties in the children at 6 years of age. Also, the children’s own urinary concentrations of pyrethroid metabolites were related to decrements in verbal and memory functions and externalising difficulties and abnormal social behaviour.

While this sole European study did not corroborate US birth cohort studies results showing that exposure during pregnancy to organophosphate insecticides at levels found in the general population may harm brain development in the foetus, the exposure levels measured in the PELAGIE cohort were considerably lower for both organophosphates and pyrethroids than those measured in other European studies as well as in studies from the US and Canada.

For example, the median urine concentration of organophosphate metabolites in pregnant women in the PELAGIE cohort was 2 – 6 times lower than for pregnant women in other studies [85, 122, 138] and the concentration of the common pyrethroid metabolite 3-PBA was only detectable in urine samples from 30% of the women compared to 80–90% in other studies [88, 139]. Thus, to supplement the French study and the previously mentioned Danish study of greenhouse worker’s children, additional studies that include more representative exposure levels for EU citizens are desirable.

Although exposure levels found in European countries are generally similar to or slightly higher than concentrations found in the US studies, the risk of adverse effects on neurodevelopment in European populations needs to be further characterised. The organophosphate insecticides contributing to the exposure might differ between the US and the EU, also in regard to oral and respiratory intakes. According to the European Food Safety Agency (EFSA), of all the organophosphate insecticides, chlorpyrifos most often exceeds the toxicological reference value (ARfD) [74].

A recent report utilised US data on adverse effects on children’s IQ levels at school age to calculate the approximate costs of organophosphate exposure in the EU. The total number of IQ points lost due to these pesticides was estimated to be 13 million per year, representing a value of about € 125 billion [140], i.e. about 1% of the EU’s gross domestic product. Although there is some uncertainty associated with this calculation, it most likely represents an underestimation, as it focused only on one group of pesticides.

Unfortunately, epidemiological evidence linking pesticide exposure and human health effects is rarely regarded as sufficiently reliable to take into account in the risk assessment conducted by regulatory agencies. For example, the conclusion from the epidemiological studies on chlorpyrifos is that an association of prenatal chlorpyrifos exposure and adverse neurodevelopmental outcomes is likely, but that other neurotoxic agents cannot be ruled out, and that animal studies show adverse effects only at 1000-fold higher exposures [141].

A recent decrease of the maximum residue limit for chlorpyrifos in several crops [142, 143] was based on animal studies only [144], but the limits for the sister compound, chlorpyrifos-methyl were unchanged. This case highlights a major limitation to current approaches to protecting the general population against a broad variety of pesticides.

reference link :

Original Research: Open access.
Early life multiple exposures and child cognitive function: A multi-centric birth cohort study in six European countries” by Jordi Julvez, Mónica López-Vicente, Charline Warembourg, Lea Maitre, Claire Philippat, Kristine B. Gützkow, Monica Guxens, Jorunn Evandt, Sandra Andrusaityte, Miguel Burgaleta, Maribel Casas, Leda Chatzi, Montserrat de Castro, David Donaire-González, Regina Graulevičien, Carles Hernandez-Ferrer, Barbara Heude, Rosie Mceachan, Mark Mon-Williams, Mark Nieuwenhuijsen, Oliver Robinson, Amrit K. Sakhi, Nuria Sebastian-Galles, Remy Slama, Jordi Sunyer, Ibon Tamayo-Uria, Cathrine Thomsen, Jose Urquiza, Marina Vafeiadi, John Wright, Xavier Basagaña, Martine Vrijheid. Environmental Pollution


Please enter your comment!
Please enter your name here

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.