Dancers’ Brains React Quickly to Changes in Music and Display Brain Frequencies Linked to Emotion and Memory Processes

0
3767

Neuroscience has studied music for decades, and it has been found to activate both the cortical and deeper brain areas.

Neuroscience of dance, instead, is a young but quickly growing field.

In her doctoral dissertation, Master of Science Hanna Poikonen developed methods for understanding the processes that dance generates in the cortex at the Cognitive Brain Research Unit of University of Helsinki.

In her research project, she compared the brain functions of professional dancers and musicians to people with no experience of dance or music as they watched recordings of a dance piece.

According to the results, the brain activity of the dancers was different from that of musicians and the control group during sudden changes in the music, long-term listening of music and the audio-visual dance performance.

“The dancers’ brains reacted more quickly to changes in the music. The change was apparent in the brain as a reflex before the dancer is even aware of it at a conscious level,” Poikonen says.

“I also found that dancers displayed stronger synchronisation at the low theta frequency. Theta synchronisation is linked to emotion and memory processes which are central to all interpersonal interaction and self-understanding.”

These results support the earlier findings indicating that the auditory and motor cortex of dancers develops in a unique way.

ballet dancer

The change in music was apparent in the dancer’s brain as a reflex before they are even aware of it at a conscious level. image is in the public domain.

“Studies of professional dancers and musicians have highlighted the importance of multimodal interaction and motor-related brain regions in cerebral processing of dance and music,” Poikonen says.

In her research, she used the novel EEG methods that she had developed: event-related potentials to investigate the influence of fast changes of musical features in the brain in a short timescale and changes in phase synchrony between two electrode channels when investigating cortical dynamics during observation of dance and music over a longer timescale.

These methods could be used in the development and assessment of therapy as well.

“The methods could be applied in estimating the efficiency and developing further expressive therapies, such as dance-movement therapy, as a part of holistic treatment plan for conditions such as Parkinson’s disease, dementia, autism, and pain and mood disorders.”

ABOUT THIS NEUROSCIENCE RESEARCH ARTICLE

Hanna Poikonen, M.Sc. will defend the doctoral dissertation entitled “Dance on Cortex: ERPS and phase synchrony in dancers and musicians during a contemporary dance piece” in the Faculty of Medicine, University of Helsinki, on 11 May 2018 at 12:00. The public examination will take place at the Main Building of University if Helsinki, lecture room 12. Address: Fabianinkatu 33, 00170 Helsinki.

Source: Felix Ströckens – University of Helsinki 
Original Research: Hanna Poikonen’s dissertation thesis is available online.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.